Training Tentang Advanced Fuel Cell Power Conditioning Systems

 

Training Tentang Advanced Fuel Cell Power Conditioning Systems

 

Training Tentang Advanced Fuel Cell Power Conditioning SystemsCOURSE DESCRIPTION:

Power conditioning is the enabling technology necessary for interfacing various distributed generator (DG) systems to electric utility and to power stand-alone loads. Power semiconductor devices are examined from an application perspective. After examining the basic conversion blocks, the course delves into suitable power conversion architectures (topologies). Examples include: (a) Fuel Cell power conversion system with battery/super-capacitor type energy storage for powering stand-alone residential loads with an option to interface to electric utility; (b) Power conversion architectures for a high speed gas turbine (microturbine) type DG; (c) Suitable converters for fuel cell turbine hybrid will also be considered.

Power electronics is an enabling technology for almost all electrical applications. The field is growing rapidly because electrical devices need electronic circuits to process their energy. Elements of Power Electronics, the first book to discuss this subject in a conceptual framework, provides comprehensive coverage of power electronics at a level suitable for novices in the field. It aims to establish a fundamental engineering basis for power electronics analysis, design, and implementation. More than 160 examples and 350 chapter problems support the presented concepts.

OUTLINE Training Tentang Advanced Fuel Cell Power Conditioning Systems:

To study in-depth fundamentals of modern power conditioning approaches (topologies) suitable for fuel cell powered systems, for stand-alone and/or utility interface.

Unit 1: Introduction to Fuel Cell Power Conditioning
* System configurations

1. Fuel cell power source for standalone system applications
2. Fuel cell power source for utility intertie applications
3. Microturbine or gas turbine power source system configuration
4. Hybrid fuel cell with microturbine system configuration

* Example systems and their features

1. Individual components in the example systems
2. Specifications

* Overview of power converters and two-day course contents

Unit 2: Multiple-Switches DC-DC Converters with Isolation
* Half-Bridge Converter

1. PWM and converter operating modes
2. Discussion of voltage and current waveforms

* Push-Pull Bridge Converter

1. PWM and converter operating modes
2. Discussion of voltage and current waveforms

* Full Bridge Converter

1. PWM and output voltage relationship
2. Discussion of voltage and current waveforms with PWM
3. Phase-shift-modulation (PSM) Method
4. Discussion of voltage and current waveform with PSM

Unit 3: Isolated DC-DC Converter Controller Design Example
* Full-bridge (or Flyback) Converter Design Example

1. Power stage design with device and component selection
2. Construction of open-loop transfer function

* Current- and Voltage-Loop Controllers Design

1. Compensator design
2. Bode plots for stability test
3. Closed-loop responses

* Realization of Compensator Circuit

1. PI compensator realization with op amp circuits
2. PID compensator realization with op amp circuits

* Commercial-IC Controllers

1. Complete circuit diagram for the design example
2. Simulation (and/or) experimental results

Unit 4: Design of Single-Phase DC-AC Inverters
* Power Stage Design

1. DC bus voltage requirement
2. Power device ratings
3. DC bus capacitor requirement
4. Power bus bar requirement
5. Design example

* PWM Switching Design

1. Complementary PWM technique in full-bridge inverter
2. Dead time requirement
3. Short-pulse elimination requirement
4. Design example

* Output Filter Design

1. Sizing ac filter inductor and capacitor
2. Design example

Unit 5: Fuel-Cell Powered System with Single-Phase AC Output Loads
* System Architectures

1. Isolation requirement and options
2. Low-voltage energy storage design method
3. High-voltage energy storage design method

* Critical Evaluation of DC-DC converter options

1. Device voltage and current requirements
2. Matrix comparison of dc-dc converters for fuel cell source

* Critical Evaluation of DC-AC converter options

1. Device voltage and current requirement
2. Matrix comparison of dc-ac inverters for single-phase outputs

Unit 6: Design of a 10-kW Design Example with 48-V DC Input and 120/240 V AC Output
* Inverter Circuit Topologies Dealing with Unbalanced Loads

1. Two full-bridge inverters
2. Two half-bridge inverters
3. Three-leg inverter

* Power stage design

1. Power device voltage and current ratings
2. Passive component voltage and current ratings

* Sensor and Sensor Conditioning

1. Voltage and current sensors
2. Temperature sensors
3. Signal conditioning and scaling

* Controller Implementation

1. Analog implementation
2. Digital signal processor (DSP) and Interface
3. Communication with fuel cell controller

Unit 7: Microturbine Power Conversion Systems
* System Architecture of microturbine

1. Block diagrams of microturbine systems
2. Electronic actuator and hydraulic controllers
3. Three-phase or multi-phase permanent magnet (PM) generators
4. Three-phase ac output with and without power electronics

* Generator Output AC-DC Stage Rectification

1. Three-phase diode rectifier for ac-dc rectification
2. Three-phase active-front-end rectification

* DC-AC Inverter for Standalone and Utility Interconnects

1. Three-phase diode rectifier for ac-dc rectification
2. Three-phase active-front-end rectifier

OBJECTIVE Training Tentang Advanced Fuel Cell Power Conditioning Systems

Completion of this course will provide participants with both a review of and discussion of the specific design issues most likely to be encountered in designing Power Conditioning systems for fuel cell, microturbine, and hybrid Distributed Generation power plants. Understanding these issues will allow the participants to properly address them with the most appropriate cost-effective technical solutions.

Instructor Training Tentang Advanced Fuel Cell Power Conditioning Systems:

Dr. Yulianto ST. MT. And Tim

Expert in Electrical Engineering and Building Maintenance.

Jadwal Pelatihan Manpowerindo.com :

  • 24 s.d. 26 Januari 2017
  • 14 s.d. 16 Februari 2017
  • 29 s.d. 31 Maret 2017
  • 11 s.d. 13 April 2017
  • 8 s.d. 10 Mei 2017
  • 22 s.d. 24 Mei 2017
  • 6 s.d. 8 Juni 2017
  • 18 s.d. 20 Juli 2017
  • 14 s.d. 16 Agustus 2017
  • 18 s.d. 20 September 2017
  • 10 s.d. 12 Oktober 2017
  • 7 s.d. 9 November 2017
  • 4 s.d. 6 Desember 2017
  • 26 s.d. 28 Desember 2017

Catatan : Jadwal tersebut dapat disesuaikan dengan kebutuhan calon peserta

 

Investasi dan Lokasi Pelatihan Manpowerindo.com :

  • Yogyakarta, Hotel Dafam Malioboro, Hotel Cavinton (6.500.000 IDR / participant)
  • Jakarta, Hotel Amaris Tendean (6.500.000 IDR / participant)
  • Bandung, Hotel Golden Flower (6.500.000 IDR / participant)
  • Bali, Hotel Ibis Kuta (7.500.000 IDR / participant)
  • Surabaya, Hotel Amaris, Ibis Style (6.000.000 IDR / participant)
  • Lombok, Hotel Jayakarta (7.500.000 IDR / participant)

Catatan : Apabila perusahaan membutuhkan paket in house training, anggaran investasi pelatihan dapat menyesuaikan dengan anggaran perusahaan.

 

Fasilitas Training di Manpowerindo.com :

  • FREE Airport pickup service (Gratis Antar jemput Hotel/Bandara/Stasiun/Terminal)
  • FREE Akomodasi Peserta ke tempat pelatihan .
  • Module / Handout
  • FREE Flashdisk
  • Sertifikat
  • FREE Bag or bagpackers (Tas Training)
  • Training Kit (Dokumentasi photo, Blocknote, ATK, etc)
  • 2xCoffe Break & 1 Lunch, Dinner
  • FREE Souvenir Exclusive
  • Training room full AC and Multimedia

Catatan :  Apabila perusahaan membutuhkan paket in house training, anggaran investasi pelatihan dapat menyesuaikan dengan anggaran perusahaan.

 

Leave a Reply

Your email address will not be published. Required fields are marked *